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In this paper we present a classroom experiment in which students were asked to solve an 
open problem. It is our premise that this kind of task fosters a ‘smooth’ approach to proofs 
that are constructed around the production and validation of conjectures. This experiment 
helps to construct a shared classroom culture, one of the aims of this activity. Classroom 
discussion and collaborative group work helps to achieve this aim. The analysis of the 
experiment shows that the discussion makes explicit aspects of students’ thinking which 
would be hidden in a normal activity. We demonstrate that a deeper analysis of students’ 
reasoning and behaviours can be better performed if lessons are video-recorded. There is a 
twofold pedagogic gain in using videotapes as a tool for analysing students’ behaviour: firstly 
it offers the teacher a tool that encourages students to reflect on their reasoning; secondly, and 
conversely, it offers researchers a further tool for analysing students’ performances. 

1. Introduction 

This study addresses the problem of introducing students to proof in mathematics. The current 
international debate amongst mathematics educators around this problem has shown that such 
introduction is a hard task for educators, for many different reasons, see [1], [2], [3], [4]. One of the 
difficulties consists of the fact that, as Moore points out in the case of the United States, “the 
transition to proof is abrupt” and this “abrupt transition to proof is a source of difficulty for many 
students, even for those who have done superior work with ease in their lower-level mathematics 
courses” [5, p.249]. The same problem is encountered in many different countries (including ours) 
and at different school levels. Another factor which makes the transition to proof so difficult is the 
typical classroom environment, described in [6, p.32] as follows: 

In the classroom, the teacher and the textbook are the authority, and mathematics is not a 
subject to be created or explored. In school the truth is given in the teacher’s explanations and 
the answer book; there is no zig-zag between conjectures and arguments for their validity, and 
one could hardly imagine hearing the words maybe or perhaps in a lesson. 

Within this environment, tasks concerning proofs are often presented in the form “prove that...”, 
where the statement to be proved is already provided to students. On the contrary, we think that 
presenting a task in a form that fosters dynamic exploration of statements might support students in 
the process towards proof. The classroom style we advocate to promote the transition to proof is 
conveniently described by a metaphor of Pollak, quoted in [6, pp.41-42]: “to move around in 
mathematical territory in a flexible manner”, that is to say to do a kind of “cross-country” 
mathematics, instead of “walking on a path that is carefully laid out through the woods”. Sharing 
this teaching perspective might make the way of doing mathematics in the classroom closer to the 
way mathematicians do. 



 The literature in mathematics education reports on various attempts to create a learning 
environment which fosters this idea. In line with the basic assumption found in [7], according to 
which cultural and social processes are integral to mathematical activity, we feel that both the 
problems to be given to students and the way in which students are required to participate in the 
classroom life may affect students’ transition to proof. The paper elaborates this claim, by reporting 
on a classroom experiment (conducted in an Italian context) in which students were asked to tackle 
an open problem by working in groups and engaging in discussion within groups and among 
groups. We will outline the key stages of the experiment and only some episodes of the classroom 
life (the ‘snapshots’ of the title) will be presented in more details. We think that this structure of the 
paper allows the readers to participate in our experiment and to produce their own explanations of 
the observed behaviours to be compared with the ones we give as a comment to the snapshots. 

2. Theoretical background 

Open problems 

Of the many existing classifications of problems, the most relevant for our purpose is the one 
referring to open compared to closed problems. Broadly speaking, the ‘concept of open problem’ 
can be defined as follows, see [8, p.1] 

In a closed problem, both the starting and the goal situation are closed, i.e. they are exactly 
explained in the task. If the starting situation and/ or the goal situation are both open (i.e. not 
closed), we have an open problem. 

Several types of activities have been classified under the label of open problems, including 
investigations, problem posing, real-life situations, projects, problems without questions, problem 
solving, see [8]. Since 1980 the idea of open approaches to mathematics spread all over the world 
and research on their potentialities is now very vivid. In the United States the Curriculum and 
Evaluation Standards for School Mathematics of the National Council of Teachers of Mathematics 
(1989) included problem solving as a method to improve the level of mathematics teaching. 
Problem solving has been defined as “the process of applying previously acquired knowledge to 
new and unfamiliar situations” [9, p.471]. 
 In England, in addition to the concept of problem solving, investigation and investigational 
work have been included in the National Curriculum since 1989 and they became officially 
legitimised by the Cockroft report in 1982. Evans in [10] explains the difference between problem 
solving and investigations as follows: problem solving is convergent action where pupils have to 
find a solution for a certain problem, while investigation is more divergent and here pupils are 
encouraged to think of alternative strategies, to consider what would happen if a certain route is 
followed or to look at whether different approaches will produce different results. In 1988 
investigations entered in the examination system in the UK via the General Certificate of Secondary 
Education (GCSE), which required an assessed element of coursework involving practically based 
studies or investigations [11] and referred to as project work. In project work students are given a 
situation and then they need to develop their own ideas, formulate and extend problems, and use 
their mathematics. As Boaler puts it, the approach “is based on the philosophy that students should 
encounter a need to use mathematics in situations that are realistic and meaningful to them” [12, 



p.49]. The projects usually last 2 or 3 weeks and at the end students are required to write a report 
describing their work and their mathematical activity. A research on the potentialities of such 
approach compared to the traditional teaching is presented in [12]. 
 Since the 1970s Australia has generally followed the USA model of problems solving but 
trying all the time to find a compromise between the American and the British approach [8]. The 
VCE (Victorian Certificate of Education) made compulsory for all students to spend at least 20% of 
their mathematics time on independent mathematics projects and at least 20 % on problem solving 
and modelling, which is defined as the creative application of mathematical skills and knowledge to 
solve problems in unfamiliar situations, including real-life situations [13]. The essential features of 
problem solving are considered to be 

a certain degree of unfamiliarity, a freedom for students to follow their own paths to a 
solution, rather than following a routine or procedure set by the teacher. When the application 
of mathematics to a real situation is involved, problem solving tasks should generally require 
the formulating of a suitable mathematical model and interpreting and evaluating results. [13, 
p.9] 

In the U.K. and Australia the fact that open problems are part of the curriculum and of the 
examination system has had a side-effect: teachers tend to look for strategies and routines which 
students can be trained to carry out in order to satisfy the coursework requirements [14]; in a sense 
they close the problems. 
 In France open problems have not been officially included in the curriculum yet. The 
characterisation of open problems given by Arsac et al. in [15] is aimed at fostering a teaching and 
learning activity which allows students to ‘do’ mathematics: 
• The statement is short, so that it can be easily understood, it fosters discovery and all students 

are able to start the solution process; 
• The statement does not suggest the method of solution, nor the solution itself, but it creates a 

situation stimulating the production of conjectures; 
• The problem is set in a conceptual domain which students are familiar with. Thus students are 

able to master the situation rather quickly and to get involved in attempts of conjecturing, 
planning solution paths and finding counter-examples in a reasonable time. 

Provided this general background on open problems1, many studies support the validity of open 
problems to stimulate productive thinking and to raise motivations to prove. The feeling of 
uncertainty created by the production of a conjecture is combined with the need of communicating 
and defending it within a community, see [16]. In [17] it is shown that in an open mathematical 
situation students can write varied and original responses to a given task and thus it is fostered the 
development of students’ creativity in mathematics. However there is the danger of closing up open 
problems, as it has happened in the U.K., where the mathematical processes of specialising and 
generalising, that are characteristic of the transition to proof and can be fostered by investigations, 
have been transformed into the sequence 

try some simple cases 
make a table 
guess a formula 
write it up. [14, p.15] 



Moreover the focus has been mainly on making students begin to investigate, without asking them 
to explain to others why their conjectures hold, so that the transition to proof has not really been 
stimulated. 
 In Italy we can say that the use of open problems was originated with particular respect to 
the issue of the transition to proof and it is not yet widespread in schools. In the official national 
curriculum for mathematics suggestions in this direction are almost non existent. Studies such as 
[1], [18], and [19] illustrate attempts of overcoming the difficulties of the transition to proof 
through the use of activities which encompass: the production of conjectures and the construction 
of proofs or refutations of the produced conjectures. Our assumption is that proving a result that has 
been discovered and validated by the students themselves is more meaningful to them than proving 
something they are given.  
This kind of activities can be classified under the label of open problems, within the broad 
definition given in [15]. More specifically, the problems we will refer to in the paper have the 
following characteristics: 
• the statement is short, and does not suggest any particular solution methods or the solution itself. 

It usually consists of a simple description of a configuration and a request of giving statements 
about relationships between elements of the configuration or properties of the configuration;  

• the questions are expressed in the form “Which configuration does [...] assume when [...]?”, 
“Which relationship can you find between [...]?”, “What kind of figure can [...] be transformed 
into?”. 

In general, presenting a problem in an open form hinders the implementation of a procedure or 
routine that has to be remembered by heart. On the contrary, students have to make their own 
decisions in choosing a solution path. An open problem allows freedom in producing conjectures. It 
requires students to pose questions rather than only to answer predetermined ones. The process of 
solution becomes as important as the solution itself; the attention is not only on ‘producing the 
correct result’, but also on ‘how to produce a result’. 

Group work 

Together with the type of problem, the way students work in the classroom proves relevant to the 
issue of the transition to proof. When speaking about open problems, most authors underline the 
value of mathematical discussions in the development of pupils’ mathematical thinking [8]. The 
role of collaborative problem solving and peer interaction in small groups has become an important 
area of research in mathematics education, see [20], [21], [22], [23]. Such interaction is seen to 
provide support for the construction of mathematical meaning by pupils, since it allows more time 
for pupils to talk and exchange ideas. However this way of working in not unproblematic, see [20]. 
Kieran and Dreyfus in [23] report on different types of interaction which occurred during a problem 
solving activity, with a focus on the difficulties involved in “entering one another’s universe of 
thought” [23, p.112]. The role of the teacher with respect to the group interaction reveals 
fundamental as well, see [20]. One of the features at stake is how students engage in and perceive 
their group work. We are particularly interested in the idea of collaborative group work, 
characterised in [24, p.282] as follows: 

collaborative group work, in which students work jointly on the same problem at all times, is 
linked with ideas such as situated cognition, scaffolding, and the zone of proximal 



development. As Damon and Phelps (1989)2 make clear, this is fundamentally different from 
co-operative learning, which refers to distinct principles and practices such as specific role 
assignments in a group, and goal-related accountability of both individuals and the group. 

Doing collaborative group work means for students to be aware of the fact that everyone can and 
should contribute to the solution of the problem, and that sharing and comparing strategies and 
ideas is much more productive than working alone. 
 
Small groups work on open problems and classroom discussion are modalities of working which 
are regularly used by the teacher who conducted this classroom experiment. They are not limited to 
geometry, but they are widely used also in other mathematical areas. The main issue related to this 
mode of working is to identify activities and learning environments in which students can be 
supported in the approach to theoretical thinking (the transition to proof sits within this broader 
framework). Introducing students to theoretical thinking means moving on from naive empiricism 
and from the tendency to gather conclusions or to justify conjectures on the basis of the observation 
of a limited number of cases or of particular situations. The term ‘moving on from’ underlines the 
fact that the starting point is observation and exploration. Therefore the activities and the tools 
teachers provide students with should have features that foster exploration, observation, discovery 
of patterns; the produced observations and conjectures should then be analysed, accepted or refuted 
by students through group or classroom discussion orchestrated by the teacher. The transition to 
theoretical thinking happens when students ask why a certain conjecture is true, after being 
convinced that it is true; this requires finding reasons within a more or less defined theory. This 
kind of approach to mathematics is similar to what happens with experimental disciplines. The 
analogy relies on the fact that, in both cases, the starting point is the perceptive and empirical level: 
regularities are discovered through exploration and convincing arguments are provided in order to 
validate or refute these conjectures. After that, both in mathematics and in experimental sciences, 
ones asks why these conjectures, which have already been validated, are true: this requires 
reasoning within a theory and producing arguments which must be valid within that theory. In this 
ongoing transition from empiricism to theory, students make meanings for the mathematical objects 
they use, through a never ending dialectic between personal and institutional meanings for those 
objects, see [25]. 

2. The classroom experiment 

One of the authors (D. P.) is a Secondary School teacher. His methodology of working in the 
classroom involves the regular use of open problems with students. The classroom experiment we 
discuss in this paper was one of his first attempts to use open problems in this third year classroom 
(16-17 year old students) of a Liceo Scientifico3. There were 15 students in the classroom; the 
scheduled time was five mathematics classes per week. The students turned to be keen on doing 
mathematics and their previous knowledge on the subject (concerning algebra and geometry) was 
satisfactory. They were not used to working in groups, however most of them were quite 
enthusiastic about this new way of doing mathematics, both the ones who found some difficulties at 
the beginning and the ones who adjusted well to this novelty. 
 The problem given to the students is taken from [15, p.48]: 



You are given a right-angled triangle ABC, AB being the hypotenuse. Take a point P on AB. 
Draw the parallel lines to AC and BC through P. Name H and K the points of intersection 
with AC and BC respectively. For which position of P does the line HK have minimum 
length? 

Figure 1, which represents the problem, was not given to the students. 

C A

B

PK

H
 

Fig.1. Illustration of the problem 
The students are required to produce conjectures, which then need to be proven. This problem is 
open according to our definition because, as the didactic analysis in [15] shows, allows a variety of 
solving strategies, which are not suggested in the statement. Thus students may exploit knowledge 
and techniques previously acquired, in particular in synthetic and analytic geometry.  
 The classroom activity was organised in two parts. First, students were divided in groups 
(three students per group) and were given one hour to explore and solve the problem. During this 
part, the teacher intervened only if students required his help, making sure to foster discussion 
among students and not to close the debate. In the second part one student from each group 
presented the group process and solution in front of the whole class; a classroom discussion 
orchestrated by the teacher allowed the students to compare all the strategies they had produced. 
The whole experiment was video-recorded and watched in the following classes. 
 The groups were formed according to the following criteria: 
• avoiding the presence of very extrovert and very introvert students in the same group, in order to 

foster group discussion; 
• putting in the same group students who are happy to work together and used to do it, in order to 

provide a friendly atmosphere; 
• providing the same level of students’ achievement within a group, in order to avoid very good 

students providing the solution too quickly and to let everyone take part in the process. 
The whole experiment was videotaped and the teacher wrote fieldnotes. The analysis we will 
present in the following sections is based on the video, the notes taken during the session by the 
teacher and the students’ work on paper. 



3. The students’ group work 

Our experiment shows a variety of solving strategies and ways of interacting (within groups, among 
groups and with the teacher). In this section we focus on the description and analysis of the 
students’ group work, with respect to modes of interaction and solving strategies. As a general 
remark, we point out that, since it was one of the first times in which these students were exposed to 
this type of work, they were quite embarrassed, especially for the presence of the video camera. 
Moreover, the room was suitable to traditional sessions, but not to ours; in some moments this 
made it difficult to carry out our activity. In this paper we confine ourselves to consider students’ 
behaviour; nevertheless we point out that the role of the teacher was very important in the 
development of the students’ group work and would deserve a specific study. On the one hand, he 
had to take responsibility for intervening at the right moment and to use efficiently the students’ 
voices. On the other hand, he had to avoid too a massive participation in the discussion. 

••• Group 1: Camillo, Silvia, Ivan 

The three students sit together but work on separate papers. They feel the need of working on their 
own first, and they communicate only in case they need help. Probably, they do not believe in the 
richness of group work compared to individual work. 
 Regarding the solution to the problem, Camillo, Silvia and Ivan exploit many different 
strategies. They use ruler and measures; they work a lot with the equivalence of areas. They do not 
use analytical geometry at all. They are not able to provide a solution by the end of the group 
session. 

••• Group 2: Marta, Tatiana, Elisa  

This group shows a totally different modality of working. Marta, Tatiana and Elisa tackle the 
problem together. They write on one sheet of paper, they all speak in turns, paying attention to what 
the others say. This group can be considered a collaborative one. 
 Elisa, Marta and Tatiana start with considerations in synthetic geometry: Elisa draws the 
diagonal PC of the rectangle CKPH. However this path is abandoned in favour of other ideas, 
mainly exploiting analytical geometry. Only at the end, they go back to the initial idea; the solution 
the group provides consists of realising that HK equals PC, because diagonals of the same 
rectangle, and using the fact that the distance of a point from a line is the length of the segment 
joining the point to a point of the line and having minimum length. 
 In this case we might think that such a strong collaboration caused a delay in the final 
solution, due to the very soon abandonment of Elisa’s idea. Perhaps, in a competitive group Elisa 
would have pursued her strategy and solved the problem more quickly. 

••• Group 3: Mauro, Luca, Claudio  

Mauro, Luca and Claudio find collaboration extremely difficult. Luca and Mauro work on their 
own and come to two different solutions. Eventually, Claudio, who seems wanting to collaborate, 
shows the equivalence of the two solutions. This is a group that, according to [26], would be 
characterised as a ‘pseudo-learning’ group: the students work together but they are not interested in 
doing this. They are very competitive, they hide useful information and they do not trust their 



colleagues. Such a group might be of no help at all to students; it could even diminish the 
potentiality of individuals. 

In solving the problem the students begin by considering particular cases and using 
measures in a dynamic way. Luca uses the ruler and moves it in order to show how the length of the 
segments varies. This may be considered an actual exploratory behaviour, which starts from 
concrete/experimental situations. Mauro suggests the final solution they come up with. He 
considers a pencil of circles centred in C and going through P. The circle whose radius is minimum 
is the circle tangent to the segment AB; therefore HK has minimum length when P is the point of 
contact (point of tangency) between AB and the circle centred in C. This idea came from applying 
Pythagoras’s theorem to the triangle PHK, in a system of co-ordinates centred in C, which produced 
the formula 

x2 + y2 = d.  
Figure 2 shows some drawings taken from the papers this group handed in. 



 
Fig.2. Mauro’s protocol 

This group shows a dynamic approach to the problem, which could be interpreted as 
transformational reasoning. This type of reasoning is described in [27, p.201] as follows: 



transformational reasoning is the mental or physical enactment of an operation or set of 
operations on an object or set of objects that allows one to envision the transformations that 
these objects undergo and the set of results of these operations. Central to transformational 
reasoning is the ability to consider, not a static state, but a dynamic process by which a new 
state or a continuum of states are generated. 

We remind the reader that these students have been using the dynamic geometric software Cabri-
Géomètre4 and it seems that they are able to transfer the skills and the different way of looking at 
problems acquired working in Cabri to other situations. For example, as we have observed in other 
studies, a typical feature, which is borrowed from the work in Cabri is the use of circles, which are 
not so much exploited when working with paper and pencil. The students also transfer from Cabri 
the dynamic way of looking at the problem; this way provides different models of a given situation, 
which may foster generalisation. 

••• Group 4: Vittorio, Greta, Alessia 

This group shows to have realised collaborative work. Our observations, especially those performed 
by watching the videotaped session, reveal the great potentialities of the discussion in small groups: 
for example, Alessia uses her hands a lot, in order to tell the others what she is thinking. Individual 
problem solving would not allow such an activity, therefore many communication and listening 
strategies, which play an important role in this phase of the solution process, would be lost. 
 As far as the solution is concerned, the students begin with synthetic geometry first, and 
then they switch to analytical geometry and explore extreme cases. They perform dynamic 
explorations, especially Alessia, who moves her hands on the figure in order to show what happens 
when the point P moves on AB. In our opinion, these dynamic explorations might be fostered by the 
work in small groups. At the end they provide the same solution as Group 2. 

••• Group 5: Claudia, Monica, Michela 

The students seem to collaborate. However a deeper analysis of their work suggests that this group 
is, according to [26], a ‘traditional learning group’. Students agree to work together, but they are 
not organised in the division of tasks. They are mainly concerned of the fact that they will be 
assessed as individuals and thus they are not interested in a learning exchange with their colleagues. 
Their way of dealing with the problem would probably be the same if they were working on their 
own. 
 Claudia, Monica and Michela are not deeply engaged with the new kind of work they are 
required to do (conjecturing). Their desk is covered with traditional learning tools, e.g. books, 
notebooks, ruler, compass, calculator. These students seem to rely on these tools in order to find a 
solution. They spend a lot of time in browsing books in order to find any useful information related 
to the given task. At some point, Michela says “do you remember that time we studied...”, referring 
to a topic studied the previous year. They do not follow a precise strategy and they can’t come up 
with a meaningful solution by the end of the session. 



4. Zoom on the case of Marta: Euclid vs. Descartes in students’ strategies 

After the first phase of group work described in paragraph 3, the teacher raised the classroom 
discussion. All groups were asked to present their solution strategies to the whole class; different 
aspects emerged from this. We discuss a case which in our perspective is very significant, since it 
brings to light an important feature connected to the activity of proving in geometry. The classroom 
discussion was a key point for this feature to emerge and video-recording the session was very 
useful for being able to make further reflections on the case. In the following, we quote some 
episodes of the discussion, which in our opinion show important elements of students’ reasoning to 
be studied. The crucial point is Marta’s claim that with analytical geometry “we can find exactly 
were the point is”, while in Euclidean geometry “we have to know measures”. At this point all the 
students participated in the debate. The issue raised was so important that the teacher came back 
again to this point a year later, watching again the videotape of this session with the students. 

Marta: “So... er... we considered a generic right angled triangle. Then the first thing we 
noticed was that PKCH stays a rectangle, for any position of P on AB” 
[...] 
Marta: “Then we realised that KH equals CP, since they are both diagonals of the same 
rectangle. Therefore we can consider CP instead of KH. Then P... well... We said that the 
shortest distance through... I mean from a point to a segment, was that segment perpendicular 
to the given line, in this case to the hypotenuse and passing through C. Therefore P must be 
the foot of the altitude related to the hypotenuse, because it’s that segment through C 
perpendicular to AB. 
[...] 
Marta: “While using Euclidean geometry we can determine P with a figure, using analytic 
geometry we solve a system with the line through C perpendicular to AB and we can find the 
coordinates of the point” 
Teacher: “Do you agree with the fact that using Euclidean geometry we can determine P with 
a figure?” 
Ivan: “We draw the line through C perpendicular to AB... “ 
Michela: “We draw the altitude. Then PC is exactly the altitude, so I can draw it... “ 
Teacher: “OK. But what do you mean when you say ‘with a figure’? Do you mean that in 
Euclidean geometry I can determine P only with a figure?” 

The teacher is trying to stress the crucial point in order to make it clear for all students. In the video 
we hear Camillo stating that “first comes Euclidean geometry and then analytical geometry, without 
Euclidean geometry, analytical geometry wouldn’t exist: however analytic geometry is more 
precise”. 
 At that time the teacher did not make further comments on this issue, but he realised that at 
that moment students were lacking the idea of ‘theory’: Euclidean geometry was considered made 
of figures only and not based on axioms, definitions, theorems. 
 The classroom discussion revealed itself very important to plan further work around proof. 
The activities that followed this first open problem with discussion (construction problems in Cabri 
aimed at developing the sense of the theory which lays behind the drawings produced on the 
screen) were suggested to the teacher by the difficulties encountered by students in understanding 
the existence of a ‘theory’ underlying their geometrical practices. Later on, the teacher showed 



again the bit of the video in which Marta is saying the words quoted above in order to go back to 
the issue of the geometrical theory behind figures. 

Our hypotheses on Marta’s behaviour 

The elements mentioned before (classroom discussion and analysis of videotapes) revealed 
themselves also very important to reflect on the students’ ways of thinking. One of the important 
features we were able to single out thanks to the discussion and the videotape is the duality between 
analytical and synthetic geometry (see ‘Zoom on the case of Marta’). This provides an example of 
how this kind of work in classroom can be fruitful for researchers, as well as for teachers. We 
consider the case of Marta, because we were struck by the way she accepts results if they come 
from analytical geometry, while she does not trust those coming from Euclidean geometry. The 
problematique we deal with is linked to the duality between visualisation and analytical thinking, as 
discussed in [28]. The characterisations given in [28] are as follows: 

Definition: Visualisation is an act in which an individual establishes a strong connection 
between an internal construct and something to which access is gained through the senses. 
Such a connection can be made in either of two directions. An act of visualisation may consist 
of any mental construction of objects or processes that an individual associates with objects 
or events perceived by her or him external. Alternatively, an act of visualisation may consist 
of the construction, on some external medium such as paper, chalkboard or computer screen, 
of objects or events that the individual identifies with object(s) or process(es) in her or his 
mind. (p.441) 

and 
Our use of analysis may be better illustrated by the biologist who analyses the nature of a 
plant through decomposing it into its parts, as well as thinking about the relationships among 
those parts and synthesising them into various other wholes such as leaves, flowers, and 
seeds. Thus, we include the naming of parts in our view of analysis, but we also include 
intellectualising about problems through thinking about relationships among those parts and 
synthesising them into various new wholes. 

Definition: An act of analysis or analytic thinking [...] is any mental manipulation of 
objects or processes with or without the aid of symbols. (p.442) 

As we will see, the particular context of proving in Euclidean geometry slightly changes the 
meaning of these two terms: in our case, visualisation mainly means geometrical drawings or 
geometrical figures, while analytical thinking is linked to the analytical method, both in the sense of 
analysis as opposed to synthesis, see [29], and in the sense of analytical geometry. In our frame 
there is not an a priori hierarchy related to the importance of these two components (visual and 
analytical) of knowledge. Instead, we fully agree with the idea expressed in [28] that learning is a 
process developed through an interactive relationship between visual and analytical thinking, which 
may become essential within the context of the transition to proof. 
 How does this interaction work in the case of Marta? We tried to provide an explanation for 
her behaviour and to construct hypotheses to be further investigated. These hypotheses are not 
contrasting each other; they, indeed, can be integrated to develop a more complete explanation of 
the case in question. 



 First hypothesis. Dealing either with figures or with letters seems to show similar patterns. 
Both these entities are linked to particular contexts. The visual context is very rich in geometry: 
when dealing with figures we can consider shape, measure, colour, position, etc. In other 
experiments, [30] for one, we found that rich contexts act as an obstacle. When working with 
algebra, students meet other types of problems: in this case the context may be too poor and there 
may be a lack of information. Nevertheless in algebra, symbols (for example, letters) are forms of 
representation close to the ‘generic’. The importance of the generic in the mathematical activity is 
widely discussed in [31], and is a key issue as far as proof is concerned. On the ground of these 
considerations, we think that the visual context requires efficient representations suitable for 
students to grasp the meaning, which stands behind the drawing. For this reason, after this activity 
the teacher made students work with Cabri, with the aim of exploiting the dynamic features of this 
geometric software to make explicit to students both the operational and the linguistic level of 
drawings. Cabri generates a quantity of examples of figures, and, as a consequence, generates 
mental images which help to approach the generic. 
 Second hypothesis. Reasoning with geometric figures implies using the synthetic method, 
while analytical thinking relies on the method of analysis. Here the word ‘analysis’ does not refer to 
the part of mathematics known with this name, but to the method of solving problems by starting 
from a statement to be proven and searching if it is a consequence of other statements [29]. It is 
well known that this method (which has old historical roots, see [32], and has recently been 
rediscovered as the top-down method) is a powerful way of solving problems and proving 
theorems. As a matter of fact, this method was used by mathematicians to prove a lot of theorems; 
only after this first phase of analysis, theorems were then presented in the synthetic form (where 
statements follow from assumptions such as axioms and definitions). 
 Third hypothesis. Marta is not able to make a clear distinction between processes and results 
of processes: the point P is well defined when a process to find it is discovered, while drawing is 
only a means of representing this process. Since the process of identification of a point remains 
hidden in Marta’s eyes, she is not able to understand that the precision of a drawing has no role in 
deciding the correctness of the discovered result. This third hypothesis is strongly supported by the 
behaviour both of Marta and of the students of Group 5. They rely in a rote-like way of working 
based on reproducing what an authority (the teacher, the book) has already shown, instead of 
developing strategies by themselves. 

5. Summary and implications 

In our opinion the study reported in this paper offers elements of reflection both to educators 
interested in introducing innovations in the mathematics classroom and to the ones interested in 
studying teaching and learning processes. The summary of the main findings allows us to draw 
some conclusions and outline future developments. 
 The work in the classroom and our analysis have stressed the importance of videotaping 
sessions in order to build a classroom story students are aware of. By videotaping a session and 
watching the video with the students, we might reduce the risk that significant moments of the 
classroom life be neglected or forgotten by students over time. The teacher himself may grasp 
voices, which would remain hidden in a normal classroom and may exploit these recovered voices 



to discuss problematic issues. This fact also happened when we looked at the video as mathematics 
education researchers. 
 The use of the videotape allowed the teacher to underline certain points many times after the 
discussion actually took place and to stress the difficulties encountered; it proved itself a powerful 
didactic tool. As a matter of fact the possibility of watching a session from the outside, stopping the 
video when you want, choosing the bits to be shown, going backwards and forwards is a powerful 
tool which allows to bring to light the most significant ‘voices’ in the classroom. When the teacher 
refers to a situation (teacher’s explanation, a student’s intervention, an exercise,...) which has been 
not only experienced, but also watched, analysed and criticised by the students themselves, the 
impact on students can be very different from reminding them a situation which has to be 
reconstructed only through memory, and that they probably have forgotten. The analysis of 
students’ behaviour through the videotape suggested the teacher to devote more time to the use of 
dynamic geometric software to emphasise the ‘theoretical aspects’ of drawing and to make students 
acquire awareness of the theory behind their drawings. The teacher had to take into account the 
students’ rooted beliefs on the nature of geometry. When dealing with habits, which are deeply 
rooted in students’ mind, it is necessary to go back again to the point. In Marta’s case this was 
possible thanks to the video. 
 Regarding open problems, we have seen that the use of open problems and classroom 
discussion helped students to produce strategies and, because of the need of communicating them to 
their colleagues in the classroom, to make them explicit. This allowed the teacher to plan future 
work starting from students’ real needs as emerged from our multi-faceted classroom observation. 
At the same time, making strategies explicit is also a powerful research tool that allows access to 
students’ learning processes. 
 A recent paper has drawn our attention towards the issue of creative thinking, whose key 
aspects are “the ability to overcome fixations in mathematical problem-solving and the ability for 
divergent production within the mathematical situation”, see [33, p.187]5. In Imai’s paper divergent 
thinking is characterised in terms of the following features: 

fluency, shown by the production of many ideas in a short time; flexibility, shown by the 
students varying the approach or suggesting a variety of methods; originality, which is the 
student trying novel or unusual approaches; elaboration, shown by extending or improving of 
methods; and sensitivity, shown by the student criticising standard methods constructively. 
(ibid.) 

We feel that the behaviour of Group 3 is an evidence of the potentialities of open problems in 
stimulating divergent thinking. Some ideas emerged that would not have been present in a normal 
session. 
 What remains under discussion and needs further adjustments is the realisation of the 
collaborative group work style. We stated that one of the aims of our activity in the classroom was 
to create a shared classroom culture and we considered collaborative group work to be an effective 
means towards our aim. Three out of five groups seem not to accept this form of interaction. Two 
points of view in the classroom (the students’ and the teacher’s) have to come to terms: the goal of 
the students is to solve the problem; the goal of the teacher is to create an environment in which all 
students have the possibility to solve the problem. The reaction of our students does not match the 
conclusions found in [24], but we have to acknowledge that there are some differences between the 



two experiments. In both cases the teacher carrying out the experiment was strongly and coherently 
convinced of the efficacy of collaborative group work, but definitely our students worked for much 
less time than the students considered in [24]. Time plays an important role in introducing students 
to the new style of working, which cannot be taken for granted in the classroom, but has to be 
taught and acquired through repeated experiences. 
 The following passage found in [35, p.474] provided us with suggestions aimed to find out 
which kind of intervention has to be performed to succeed in dealing with collaborative group 
work: 

the suggestion that students can be left to their own devices to construct the mathematical 
ways of knowing compatible with those of wider society is a contradiction in terms. 

To face the problem of changing the classroom style of work we feel the need to enlarge our 
considerations to issues concerning social and socio-mathematical norms in the classroom, in line 
with the discussion presented in [34] and [35]. In these papers the authors analyse how students 
behave when they have to participate in a new teaching project. In their opinion students’ 
participation is actual and efficient 

only to the extent that they [students] have constructed personal ways of judging that enable 
them to know in action both when it is appropriate to make a mathematical contribution and 
what constitutes an acceptable mathematical contribution. This requires, among other things, 
that students can judge what counts as a different solution, an insightful solution, an efficient 
solution, and an acceptable explanation. But [...] these are the types of judgements that the 
teacher and students negotiate when establishing sociomathematical norms that characterise 
an inquiry mathematical tradition. In the process, students construct specifically mathematical 
beliefs and values that help form their judgements. [35, p.473] 

In [34], Cobb and Yackel point out that there is a reflexive relationship between the constitution of 
the classroom social norms, that are consistent with an inquiry approach to instruction, and the 
students’ reorganisation of their beliefs about their role in the classroom, the teacher’s role in the 
classroom, and about what constitutes mathematical activity. A consequence of this is that not only 
each one contributes to the constitution of the other, but also that one does not exist without the 
other. Further, it means that a change in beliefs occurs concomitantly with the constitution of 
norms. We think that the work in collaborative groups would have been carried out more efficiently 
with a preliminary work on students’ beliefs. 
 The interlacement of social and sociomathematical norms and students’ beliefs in the 
acceptance of collaborative group work emerged in our groups. We have seen that the students of 
Group 5 care of the individual assessment more than of the solution of the task. This fact may have 
affected their negative reaction to the new way of working. The belief underlying this behaviour is 
mainly linked to the role ascribed to instruction in individuals’ life. 
 Other types of beliefs affected the acceptance of collaborative group work in the considered 
classroom. As pointed out by McLeod [36], [37] we have to take into account that beliefs 
encompass cognitive as well affective aspects. Both aspects influence the students’ responses to 
input given by the teacher. We may interpret the behaviours of the different groups as an evidence 
of the impact of affective factors. In Group 2 the low self confidence of Elisa provoked the abandon 
of her proposed (correct) strategy. In Group 3 the theory of success espoused by students is based 



on individual rather than on social issues. In Group 5 the strong trust in external authority 
(traditional learning tools) is hindering autonomous thinking. 
 Eventually we may say that the main findings about the key elements characterising our 
experiment of introduction to proof - i.e. tools of observation, open problems, collaborative group 
work - are only partially conclusive. In particular, collaborative group work needs further 
investigation and analysis both in classroom and in educational research. Nevertheless our feeling is 
that our experiment shows that all these elements are essential components in the students’ 
approach to proof that we have advocated at the beginning. 
                                                 
1 A detailed discussion of the different approaches in the different countries is not the aim of this paper. 
2 From references in [8]: Damon, W. and Phelps, E., 1989, Int. J. Educ. Res., 13, 9-19. 
3 Liceo Scientifico (Scientific Lyceum) is a type of Italian secondary school with a scientific orientation; in this type of 
school mathematics in an important subject. 
4 Baulac, Y., Bellemain, F., Laborde, J.-M., 1988, Cabri-Géomètre, un logiciel d’aide à l’apprentissage de la géométrie. 
Logiciel et manuel d’utilisation, Paris: Cedic-Nathan. The most relevant feature of Cabri from the didactical point of 
view is the dragging function, that is the possibility of directly manipulating the constructed figures on the screen: if a 
figure has been correctly drawn, according to the rules and properties of geometry, it keeps all its internal relationships 
whenever it undertakes dragging. Otherwise it messes up. 
5 For the references on which Imai’s background is based see [33]. 
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