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EXPERIMENTING AND EXPLAINING QUANTITY VARIATIONS  
TO LEARN FUNCTIONS WITH CABRI-GÈOMÈTRE 

 
Summary 
Nowadays in Mathematics Education, thanks to the modern available 

technologies, it is possible to introduce early at school themes and 
problems dealing with the mathematics of change and variation, which 
before were only tackled in the last years of secondary school. We 
present an activity in Cabri-Géomètre, to introduce students of lower 
secondary school to the mathematics of change and variation. We 
analyse this activity, particularly students’ cognitive processes, using a 
theoretical framework constituted by three essential elements: some 
research outcomes relative to the use of a Dynamic Geometry Software 
also for teaching branches of mathematics different from geometry; the 
embodied approach to mathematics particularly for the attention given to 
metaphors as the essential mechanism in human cognition; the 
instrumental approach, recently used in Mathematics Education, based 
on the distinction between an artefact and an instrument. 

 
Introduction 
The Italian traditional approach in teaching-learning Calculus, at secondary 

school level, has always been focused on the formal and syntactic aspects, 
based on symbolic calculation and manipulation as necessary pre-requisites. For 
this reason, the specific topics of Calculus are inserted in upper secondary 
school. However, the mere simplicity of tracing a graph or manipulating an 
algebraic expression given today by new technologies makes us reconsider in a 
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new way such a traditional approach, which has been one of the most powerful 
means of student selection in math courses. 

The software made available today allows us to re-structure and re-organise 
the teaching-learning of Calculus, regarding the sequence of topics, and the 
school level in which they can be introduced. We have also to ponder on how 
the meaning of the mathematical objects can change with the use of software.  

In mathematical activities with tools there exists a strict relation between 
practices and meaning: being the practices dependent from the tools used, then 
there exists a strict relation too between the meaning of the mathematical 
objects and the tools used for coping and solving problems (Paola, in print). 

We think that the topics of Calculus could be considered as conceptual 
knots, the most entailed in educational change, which technologies today render 
possible. The studies of David Tall are a perfect example in order to highlight 
this point. We can think, e.g. to the role played by new technologies in Tall’s 
papers, for grounding the fundamental concepts of Calculus on the cognitive 
roots (Tall, 1989; 2002) and for managing the teaching-learning activities on 
them. 

Another cognitive and pedagogical advantage in the use of technologies 
consists in the possibility of approaching the mathematical concepts in a 
dynamical way. This has been pointed out by many researches in DGS. In 
particular the problem has been studied by Kaput, who presents three different 
kinds of consequences determined by the use of technologies in the teaching-
learning of Mathematics: the shift from a static knowledge to a dynamic one; 
new modalities of data representation (obtained through simulations or by 
specific devices as sensors) and of data patterns and relations; the computation 
of difficult problems, such as discrete non-linear dynamic systems, where 
powerful technologies are necessary (Kaput, 2002). 

In this paper we want to comment on the ways in which a tool as Cabri-
Géomètre allows meaningful activities for the study of quantity variations, 
before having at disposal such symbolic manipulation techniques, (the same that 
were considered essential for an approach to Calculus). We think that an earlier 
approach to Calculus, at lower secondary school, could improve and enhance 
the competences related to exploration and observation, on which the 



construction of meanings of Calculus concepts can be based later, at upper 
secondary level. 

The possibility of doing activities for an earlier and informal, but meaningful 
approach to Calculus at lower secondary level, offers an opportunity to have 
easy access to fundamental concepts, very important in society nowadays.  

 
Theoretical frames 
The elements we use for a theoretical framework are of different kinds: 

1. Some outcomes of the last years’ research, relative to the use of 
a Dynamic Geometry Software for learning geometry, are used in a 
wider perspective, in order to enlarge the teacher’s purposes to look at 
the same DGS also for teaching other branches of mathematics, as 
pointed out by Laborde & Mariotti (2001); 

2. Some recent studies in the field of cognitive linguistics, namely 
the embodied approach to mathematics, as described by Lakoff & 
Nùñez (2000); 

3. The instrumental approach, coming from ergonomics and 
recently used in Mathematics Education, which is based on the 
distinction between the object (artefact) used by a subject and the object 
together with the kind of use activated (instrument) (Rabardel, 1995; 
Verillon & Rabardel, 1995). 

 
According to Kynigos (in Nemirovsky et al., 2004), within the first point, 

many papers in the last years examine the role of constructions in geometry, 
focussing on them as a means to define and think with properties of a 
geometrical figure, rather than perceiving it as a shape or a drawing (e.g. 
Mariotti & Bartolini, 1998; Mariotti, 1996). Others examine different dragging 
modalities, as sets of continuous change under the constraint of preserving the 
properties used in the construction of the figure. Some of them distinguish 
between different modalities of dragging, according to the kind of activity made 
by students and the kind of feedback furnished by the software (e.g. Arzarello et 
al., 2002); others highlight the importance of experimenting with wandering 
dragging to appreciate the initial problem and to subsequently test specific 



conjectures (Furinghetti & Paola, 2003). Some studies concentrate on the role of 
trace and locus as tools in the learning process (e.g. Laborde & Mariotti 2001). 
A particular set of researches points out the importance of measurements in the 
use of a DGS, because they are digital representations of values of objects and 
relations (angles, segments, areas etc), in the sense that they change in 
conjunction with dragging (Olivero & Robutti, 2001; 2002). All these 
approaches focus on the fundamental role of those different kinds of use of a 
DGS: the introduction of students to proof, through various activities of 
construction, exploration, production of conjectures. In them, proof is seen as a 
long-term process, supported by those various activities mentioned before, and 
DGS is seen as a supporting tool for the transition from perceptual to theoretical 
perspectives (Arzarello et al., 2002; Healy, 2000). Framed in this transition, a 
group of reports have stressed the importance of teacher mediation (Jones, 
1997; Olivero and Robutti, 2002; Gardiner and Hudson, 1998).  

Recently, some studies are specifically aimed at using a Geometry software 
in order to teach some topics of algebra, such as symbolic expressions, 
equations, functions, and so on (e.g. Laborde & Mariotti, 2001; Cha and Noss, 
2002; Kynigos and Psycharis, 2003). Our aim is to introduce students to 
theoretical thinking, starting from explorations in a DGS as Cabri, in which they 
can experience the variation of quantities in order to construct a meaning for 
functions, their graphs and their critical points.  

 
The second element of our theoretical frame consists in the fundamental 

cognitive structure introduced by Lakoff and his colleagues: metaphors, as 
essential mechanisms in human cognition. Recently, Lakoff and Nùñez (2000) 
have extended this argument to a detailed account on how mathematical 
cognition is first rooted in our body via embodied metaphors, then extended to 
more abstract realms through the so-called conceptual metaphors, i.e. inference 
preserving mappings between a source domain and a target domain, where the 
former is more concrete and better known than the latter. They show how 
mathematical cognition is built on the same mechanisms of our general 
linguistic and cognitive system. The embodied approach reveals useful 
information in describing students' cognitive evolution within technological 



environments and for designing suitable teaching experiments. It shows a basic 
unity in their cognitive evolution from perceptions, gestures, and actions, to 
more theoretical aspects (for an example, see Arzarello, 2004, in print). 
Embodied cognition is also useful to analyse the dynamics of the social 
construction of knowledge by pupils: specifically the metaphors, introduced by 
students in a group or class discussion, or by the teacher when she/he wants the 
students to concentrate on a particular concept or to construct a new one (for an 
example, see Robutti, 2003), reveal powerful tools for supporting and sharing 
new ideas. 

 
The third element of the theoretical framework is the instrumental approach, 

introduced by Rabardel (Rabardel, 1995; Verillon & Rabardel, 1995) to clarify 
the effect of technical devices on learning processes. In this approach, the 
technical devices are considered with two interpretations. From the one side, an 
object has been constructed according to a specific knowledge, which assures 
the accomplishment of specific goals; on the other side, a user interacts with 
this object, using it in different ways. So, the object in itself is called an 
artefact, that is, the particular object with its features, realised for specific goals, 
and it becomes an instrument, that is, the artefact with the various modalities of 
use, as elaborated by an individual, who is using it. The notion of artefact refers 
to the object, with its characteristics, while the notion of instrument is referred 
to the subject who uses the artefact, with particular modalities, related to a 
specific task. So, the instrument is conceived as the artefact together with the 
actions made by the subject, organised in collections of operations, classes of 
invariants, and utilisations schemes. The artefact, together with the actions, 
constitutes a particular instrument: so, different subjects can have different 
instruments using the same artefact, or the same subject can use the same 
artefact as different instruments.  

For example: the rule is an artefact, which can be used by a student to trace a 
line, as the locus of aligned points in a plane. The transformation of the artefact 
into an instrument is made through the action of putting it on the paper, and 
tracing a line following one of its sides. The same artefact, however, can be 
used by a driver on a map, to control and measure distances between two points. 



The transformation of the artefact into an instrument is made through the action 
of pointing it at a point, and reading the distance between that point and 
another. Therefore, the artefact becomes a different instrument through the 
purpose of the actions involved in by the subject.  

As different and coordinated utilisation schemes are elaborated successively 
(by the subject, with her/his actions), the relationship between the artefact and 
the subject can evolve, causing the so-called process of instrumental genesis 
(Guin & Trouche, 2002) revealed by the schemes of use (the set of organised 
actions to perform a task) activated by the subject. In principle, it is not assured 
that this evolution is consistent with the original purpose for which the object 
has been designed. While the artefact is an object that can be considered static, 
in the sense that it does not change its features in time, the instrument can be 
thought dynamic, in the sense that it can change its features, according to the 
schemes of use activated by the user. 

In our study, the subjects are the students, who use Cabri in different ways, 
with various actions and commands. The process of instrumental genesis can be 
integrated with the construction of knowledge, because the students, solving a 
task with Cabri, do not only press the commands or move the mouse in order to 
obtain a result (whatever it may be), but they must also control it, interpret it 
correctly and use it in their conceptual path to the task.  

 
The integrated use of these three elements allows us to analyse the teaching-

learning activities from a wide perspective, giving rich and various ways for 
interpreting them. To use a DGS as Cabri in the introduction of some topics of 
pre-Calculus is a challenge we are trying to carry out, just to explore 
potentialities and pitfalls of such an integrated approach. The first outcomes we 
obtained encourage us to go on this way deeper and deeper, and it is exactly 
what we are doing, following the same class of students in their curricular path 
over the years. 

 
The teaching experiment 
This activity has been proposed and carried out in two classes of 9th grade of 

a scientific school with the experimentation in computer science (P.N.I., Piano 



Nazionale per l’Informatica). In one of them (class A), when the problem was 
proposed, the students were at the beginning of their use of Cabri-Géomètre. 
They had used it only for a short time, especially in activities aimed at the 
construction of figures and the exploration of geometrical properties. 

In the other class (class B) the students were more skilled in using Cabri, 
having utilised it in various activities aimed at exploring geometrical 
problematic situations, not so simple for their age and their knowledge. 

Both in class A and in class B, the students worked in pairs (in only one case 
a  group of 3 was necessary) in a computer science laboratory, with the task of 
describing on a piece of paper the applied strategies, needed to solve the 
problem.   

The activity of a pair of students in class A was video-taped.  
The text of the problem is ordinary: 
 
Consider a set of rectangles with a fixed perimeter, for example at 12 cm. What 

can you make out of their area? 
 
In class B, the text of the same problem has been slightly different, due to the 

aim: 
 
What can you make out of rectangles with a fixed perimeter? 
 
Of course, the open text of the problem was on purpose: in fact, the open 

problems (Arsac, Germain & Mante, 1988)3 naturally guide the students in 
exploring and observing, and so they foster the production of conjectures. 
Moreover, the open problems motivate students at justifying the conjectures, 
particularly when they are solved in a DGE as Cabri, in which the observation 
of changes and invariants is increased.  
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The text of the problem proposed in class A is less open than the one 
assigned to class B. This choice is mainly due to the fact that those students 
were at their initial experiences with the use of Cabri: a formulation of the 
problem suggesting the object to explore and to find seemed more reasonable.  

In both cases the work-sheet, as it is represented in Figure 1, has been 
prepared by the teacher in this initial phase, to avoid an excessive attention of 
the students on the technical details of the construction, instead of the 
mathematical concepts involved in the problem (see the Cabri II - file 
“rettisope.fig”) 

 

 
Figure 1 

 
As the figure suggests, the segment AB represents the half-perimeter of the 

rectangle. The point P, which has been constructed on the segment AB, and so 
is bound to it, determines the two segments AP and PB that are the two sides of 
a rectangle of perimeter 12 cm. 

Once having constructed the segment AB, fixed a point P on it, constructed 
the two segments AP, PB and determined the measures of AP, PB and AB, one 
can construct the black rectangle with the following actions: 



a) to draw the ray with origin A, on which to transfer the measure 
of AP 

b) to draw the perpendicular line to AP by point P 
c) to draw the ray with origin P, on the perpendicular line drawn at 

b) then to transfer the measure of the segment PB on it 
d) to draw the perpendicular line to PB by point B 
e) to draw the perpendicular line to AP by point A 
f) to mark point Q, intersection point of the two straight lines, 

drawn at d) and e) 
g) to construct, in the menu “polygon”, the polygon APBQ that is 

a rectangle, because of this construction 
h) to hide all the objects, except the segments AB, AP and PB and 

the rectangle APBQ 
i) to colour the rectangle with the tool “fill”. 

 
At this point the student, invited to drag the point P on AB, looks at the 

changing rectangle, which maintains a fixed perimeter, while its area is 
changing and it reaches the value 0 in the limit cases in which P coincides with 
A or with B. 



 

 



 
 

Figure 2 
 
The first observations have been made at a pure perceptive level. The students 

just observe that if the point P moves, than the rectangle moves. The passage from a 
perceptive level to a variational level (consisting in the observation that the area, or 
other quantities of the rectangle depend on the position of P, and so on the length of 
AP, while the perimeter does not depend on the position of P) is subsequent. It has 
been obtained with modalities different from one student to another, even according 



to the experience he has reached in working with Cabri and to the more or less open 
formulation of the problem.  

For example, in class A the explorations have been immediately concentrated on 
the area, while in class B they also deal with the measures of the sides, sometimes 
of the diagonal, often of the angles as invariants. 

The students of class A at the beginning were more static in their 
explorations than their mates of class B: from the deep analysis of the 
videotaped session, the teacher observed4: “While Alessio is dragging point P, 
the rectangle is changing its shape, and Ettore says: Let’s start from the 
hypothesis that all the rectangles had the same area. Alessio goes on dragging 
and Ettore writes on his exercise book A = l1*l2 and attempts with different 
numbers. Only after attempting with the numbers, he realises that the area 
changes (moreover, he asks the teacher for a calculator in order to do some 
trials and Alessio, who often abandons dragging for looking at Ettore’s work, 
supports his request). They work a lot on the paper, before dragging again. They 
discover the cases with area equal to zero in the numeric exploration made on 
the paper. It seems that they drag principally for checking and verifying 
conjectures just made, or looking at particular cases, than for observing 
regularities in a dynamic way”. 

In class B, however, the use of dragging is more evident and dynamic, as we 
can expect from students who can use such a powerful tool. This different 
behaviour is a typical of the students of these two classes and also of the 
strategies they use to justify that the square is the rectangle with the maximum 
area.  

This fact suggests that the evolution of Cabri from an artefact to an 
instrument with particular schemes of use (those of dragging as means of 
exploration, observation, conjecture and check) is not natural, but it needs a lot 
of time and a continuous and conscious support of the teacher. Besides, the 
instrumental genesis, namely the process by which a software (artefact) 
becomes a instrument for doing mathematical activities, depends not only on 
the software constraints and potentialities, but, more generally, on the didactic 
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environment (students’ knowledge and expertise, institutionalised knowledge 
which the teacher refers to). For this reason the instrumental genesis is a process 
that the teacher must be aware of, in order to provide meaningful learning 
activities for the students. 

The first observations made at a mere perceptive level can be enriched by the 
fact the measurements of area and perimeter enter the scene. In class B some 
students autonomously observed, using the tool ‘animation’5, that the numbers for 
the area measures do not vary uniformly, but they change more and more rapidly, 
as point P is moving from the centre of segment AB to one of the two end-points A 
or B. As we can see, Cabri offers the possibility to look simultaneously at the 
numerical and geometrical changes and this favours the production of linking 
metaphors between two mathematical domains. According to Lakoff and Nunez 
(2000), linking metaphors are conceptual metaphors which conceptualise one 
domain of mathematics in terms of another. In this case the students link the 
rectangle variation to the number variation (and also to the rate of this variation). 
This fact let the students understand the main features of the mathematical relation 
between the area and the length of AP, namely the functional dependence of the 
area of the rectangle from the length of AP.  

In class A, it was the teacher who suggested to the students the use of 
‘animation’ and the observation of area measures while the animation goes on. This 
direct intervention of the teacher points out the importance of the theoretical 
thinking (the lens of the theory) also to see what we are looking at. Without the 
teacher intervention, in the class A, where the instrumental genesis has not 
happened yet, the students are not able to see what they are looking at, but after the 
teacher intervention they become able to link the numeric variation to the change in 
the figure. 
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However in both cases, finally the observation of the way in which measures 
change6 is shared and thought significant by all the students of both classes. 

We observed, in both classes and above all in B, students tracing gestures in the 
air, representing the variation of area. Only in one case such gestures were 
transferred onto paper without an explicit request of the teacher. Some of those 
students, but also others who did not show clear ideas on the variation of the area, 
used the instrument of finite differences7, in order to search for a pattern in the 
numerical values of area (or to check the conjectures). 

Most of the students who took part in considering the first differences used a 
table like the one shown below. 

AP PB Area ∆ Area 
0 6 0  
1 5 5 5 
2 4 8 3 
3 3 9 1 
4 2 8 – 1  
5 1 5 – 3  
6 0 0 – 5  
 

Table 1 
 

Even if the table contains only integer values expressing the measures of the 
rectangle sides, it suggests that the area decreases less and less, while the length of 
AP varies from 0 to 3, and decreases more and more while the same length varies 
from 3 to 6. Two pairs of students of class B tried to consider also decimal numbers 
of measures, which is possible in Cabri, but they had some difficulties for the 
approximation of the measurement tool (using two decimal digits the difficulty 
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consisted in moving P in so that the measure of AP could vary with a uniform rate. 
With only one decimal digit the difficulty consisted in a low sensibility of the 
measurement tool, which did not let possible to link a unique measure of the area to 
every measure of AP).  

A pair of students of class B utilised a spreadsheet, writing in the first column 
the decimal numbers from 0 to 6, changing with a step of 0.1; in the second column 
the formula =6 – A1; in the third column the formula = A1*B1 and in the fourth 
column, from the second cell, the formula = C2 – C1. In doing so, copying the 
formulas in the proper way, they obtained a table of the same kind of Table 1, with 
measures with one decimal digit. In this situation the students used the graphic 
environment of the spreadsheet, in order to have the parabola representing the 
function area.  

At this point of the exploration phase, every student was sure that the maximum 
for the area was in the case AP = 3, i.e. in the particular case of a square; most of 
them argued the graph shape of the function area and some of them made some 
considerations about the symmetry of that graph.  

A pair of students in class B made a drawing similar to Figure 3 (it was a sketch, 
of course).  

 
Figure 3 



The various approaches described above are characterized, from a cognitive 
point of view, by a shift from perceptual to more theoretical aspects, linking 
together in different ways numerical, graphical and symbolic results. 

We can say that the knowledge about the solution of the problem was diffuse 
and grounded in both of the classes. In order to ground it better, and shared among 
the students, Cabri has been introduced by the teacher (in a deep way in class A, 
lightly in class B), for representing the variation of area, depending from the 
variation of AP.  

It can be obtained with the following steps: 
a) to insert the Cartesian reference system with the ‘show axes” 
b) to transfer (a measurement) the length of AB on axis x and the 

measures of perimeter and area on axis y  
c) to choose the point Area, with coordinates the length of AP and the 

area of the rectangle 
d) to choose the point Perimeter, with coordinates the length of AP 

and the perimeter of the rectangle 
e) to use the “trace” command with points Area and Perimeter, in 

order to obtain the graph of function area and function perimeter, dragging 
point P.  

The resulting figure is something like Figure 4: 



 
Figure 4 

 
After an activity of this kind, all the students are absolutely convinced that the 

found solution is the right one. It could be interesting asking them, at this point, why 
the maximum of the area is when AP = 3, namely when the rectangle is a square. 
Usually the first reaction by the students is to give answers of this kind: it is like this 
because it is like this.  

The more the teacher is questioning, the more the students become disoriented 
and impatient, because they are not able to understand what is interesting to be 
questioned in a problem that does not seem to reveal something new. If a balanced 
atmosphere between disorientation and curiosity is created, the teacher can enter 
the scene with a very important and significant intervention about the role of 
justification in Mathematics. This could be a perfect occasion to introduce students 
to theoretical thinking, to the role and the specificity of a theory as environment in 
which it is possible to explain why: “It is shown how the empirical approach to 
geometry (which is often associated with computer based dynamic geometry 



software) can be used as a basis for creating didactic situations in which 
students require proofs” (Dreyfus & Hadas, 1996). 

In other words, it is a good occasion to start with a work on the role and the 
functions of proof in a mathematical theory: not to convince of the validity of a 
conjecture, but to precise the dependence of a conjecture from a set of propositions 
as basis of a theory, through the relation of logic consequence (Paola, 2004).   

In class B a pair of students, after many questions from the teacher about why 
the solution works, answered: “Look Mr., if I am in the middle point and I move a 
bit on the left and a bit on the right, the area diminishes …”  

This answer gives the teacher the possibility to act in a sort of zone of proximal 
development with this answer: “How can translate in symbols and in operative 
terms a bit on the left and a bit on the right of the middle point? 3 – x e 3 + x. So, the 
area of the rectangle is (3 – x)·(3+ x), namely 9 – x2”. At this point the students have 
no difficulties in recognising that the maximum is when x = 0. The teacher has to 
use this occasion for trying to explain why this answer can be considered a proof 
and so an explanation of why the square is the rectangle of the maximum value for 
the area of a set of rectangles with the same perimeter (Paola, 2004).  

Obviously, the meaning of the term why has to be negotiated and not imposed 
with authority: it represents a crucial point in mathematical thinking that has to be 
treated more times. We may not pretend that all the students can appreciate such 
difficult motivations at the first occasion, because they need to share the 
mathematical building from a theoretical point of view. 

 
Conclusions 
The activity discussed here, clearly shows that Cabri is not only a Dynamic 

Geometry Software, but, more generally, a microworld (Balacheff, & 
Sutherland, 1994; Laborde & Strässer, 1990) that let possible the construction 
of mathematical teaching-learning environments. Particularly for what concerns 
the study of quantity variation, with Cabri it is possible to work simultaneously: 

a) on the perceptive-motor aspects (e.g. the rectangle that changes 
its shape under the dragging of point P); 



b) on the numerical aspects (e.g. the variation of the numbers 
representing the measures of the area, which change with different 
velocity, according to the respective  distance from the maximum);   

c) on the graphs, which favour seeing a relation between the 
motor-perceptive and the numerical aspects, and represent a mediation 
between the two, not immediately simple to see; 

d) on symbolic formulas, intended also as a tool for introducing 
students to theoretical thinking and proof 

e) on symbol role in the teaching-learning process, particularly in 
the construction of mathematical meanings, and more generally, in 
Mathematics as a subject-matter. 

From the didactic point of view activities like the one presented here unveil 
interesting perspectives for the introduction of significant Calculus concepts. 
Particularly, as teachers we have to observe the awareness that students learn to 
have, in solving activities related to: 

a) quantity change and rate of change; 
b) relations between numerical, graphical and symbolic aspects 

involved in an activity. 
Those aspects are at the core of Calculus as a subject matter, and it is 

possible to ground a sensible teaching practice on such aspects, as Galileo 
intended: “linked to senses and to reason”.  

The same aspects  in meaningful activities have the important aim to 
introduce students not only to some Calculus concepts, but also to them as part 
of a theory, particularly to theoretical knowledge and its educational function: 
to explain why a statement is true. The explanation of why is an essential feature 
of a theory, and the relative answers gain a full meaning in the theory itself. 

From the point of view of research in Mathematics Education it seems 
particularly significant highlight that the three elements of the theoretical 
framework we used here in an integrated way have been useful in various ways: 

• first of all, to project a teaching sequence coherent with the aim 
of introducing functions and topics of Calculus (particularly referring to 
the first element of our framework, namely the studies about DGS); 



• then to observe, interpret and analyse students’ behaviours and 
their interaction with the teacher, especially what metaphors are used, 
and also other non linguistic aspects, as gestures, which we are 
studying, even if not yet reporting here (and the second element of our 
framework is useful for that); 

• finally, the third element (namely the instrumental approach) of 
the theoretical framework has revealed useful in observing and 
interpreting the role played by the artefact (particularly the instrumental 
genesis helped us in explaining the initial different students’ behaviours 
(of class A and B) coping the same problem. 

In our opinion there are strict connections between the didactic and research 
point of view, e.g. some studies show that providing students with problems in 
the form "prove that…" may prevent them from being able to attempt proving. 
On the contrary, providing students with problems which require and support 
the production of conjectures may help them in the proving phase: the 
hypothesis is that a cognitive continuity in the transition from exploration to 
proving might be constructed on the basis of the production of conjectures 
(Boero et al., 1996). Another example could be the important synergy existing 
among the kind of use of the artefact and the institutional knowledge (in the 
sense of Chevallard, 1992). To explain better, if a teacher thinks that the role of 
a proof is to convince someone that a statement is true, then the use of DGS 
could have opposite effect on the construction of a theory (in the sense 
described before, namely to explain why). In fact, the results of the explorations 
made in the DGS could convince very well, so they could render a proof (aimed 
at convince) complete usefulness, unless using a DGS exclusively for activities 
of the kind suggested in a recent article (Hadas & al., 2000). 

Otherwise, if a teacher thinks that the main role of a proof is to explain why a 
statement is true, namely after being convinced, to explain the link of logic 
consequence between the fact observed and the previous statements, then a 
DGS becomes an excellent and helpful artefact for proving, just because it let 
possible convincing! 

The problematic matter of instrumental genesis and of its difficult realisation 
suggests also that some schemes of use of the artefact (e.g. dragging) should be 



taught themselves: anyway, this is not expected at all. The difficulty showed by 
the students of class A (not expertise in the use of Cabri), in “seeing” what they 
are looking at and in using dragging in a proper way, suggests that the students 
must actually learn the process of exploration allowed by the instrument.  

The theoretical elements used in this article are fundamental because even in 
teaching practice, as in Mathematics, without precise theoretical frames, 
sometimes one is not able to “see” what he is looking at. 
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