

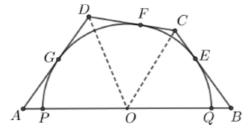
"Abbi pazienza, ché il mondo è vasto e largo" (Edwin A. Abbott)

Flatlandia – Problema – 13 – 27 gennaio 2020 - Commento alle soluzioni ricevute

Il testo del problema

Siano dati un quadrilatero ABCD e una semicirconferenza di centro O, con O punto medio di AB, il cui diametro giace su AB ed è tangente agli altri tre lati del quadrilatero (vedi figura).

- a) Provare che i triangoli AOD, DOC e COB sono simili.
- b) Dedurne la relazione: $AB^2 = 4BC \cdot AD$. Motivare le risposte.



Commento

Sono arrivate soltanto due risposte da classi II di liceo scientifico.

Il problema poneva due quesiti su un particolare quadrilatero circoscritto a una semicirconferenza. Il primo chiedeva di dimostrare che i tre triangoli in cui si scomponeva il quadrilatero erano simili. Il secondo chiedeva di dimostrare, utilizzando il primo punto, una interessante relazione tra la "base" del quadrilatero e i suoi "lati obliqui".

Le risposte arrivate risolvono in modo corretto il problema in ogni sua parte

Sono pervenute risposte dalle seguenti scuole:

- Liceo Scientifico "Aristosseno", Taranto
- Liceo Scientifico "G. Alessi", Perugia

Nota. Nelle soluzioni riportate, le correzioni, le aggiunte o i commenti sono scritti fra parentesi quadre. Con doppia parentesi quadra vengono indicate le parti omesse.

Soluzioni arrivate

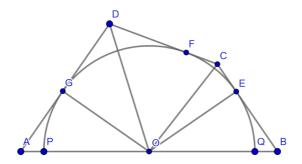
1)Soluzione proposta dalla classe 2^A B scientifico internazionale Liceo "Aristosseno" di Taranto



a)Tracciamo i raggi OE,OF e OG e osserviamo che i triangoli rettangoli AOE e BOG sono congruenti essendo il punto O punto medio di AB e i cateti OE e OG raggi della stessa circonferenza. Indicato con v l'angolo \overrightarrow{AOE} \overrightarrow{AOE} = \overrightarrow{BOG} \overrightarrow{BOG} si ha che \overrightarrow{OAE} \overrightarrow{OAE} = \overrightarrow{OBG} \overrightarrow{OBG} = 90°-v. Gli angoli \overrightarrow{EOD} \overrightarrow{EOD} e DOF DOF sono congruenti perché OD è bisettrice dell'angolo che formano i raggi OE ed OF; gli angoli FOC e COG COG sono congruenti per lo stesso motivo. Indichiamo i primi due angoli con α e i secondi due angoli con β . Siccome gli angoli acuti di un triangolo rettangolo sono complementari possiamo dire che : $\vec{EDO} = \vec{FDO} = \vec{FDO} = \vec{FDO} = 90^{\circ} - \alpha$ e che $\vec{FCO} = \vec{GCO} = \vec{GCO} = 90^{\circ} - \beta$. Sappiamo inoltre che la somma degli angoli interni di un quadrilatero è pari a 360° e perciò nel quadrilatero ABCD si ha : $2(90^{\circ}-\gamma)+2(90^{\circ}-\alpha)+2(90^{\circ}-\beta)=360^{\circ}$ da cui ricaviamo : $\alpha+\beta+\gamma=90^{\circ}$. Sarà quindi $\alpha+\gamma=90^{\circ}-\beta$, $\beta+\gamma=90^{\circ}-\alpha$ e $\alpha+\beta=90^{\circ}-\gamma$ e quindi i triangoli AOD, [[DOG]] [DOC] e COB hanno i tre angoli congruenti e risultano simili per il primo criterio di similitudine. b) Essendo simili i triangoli AOD e COB, i loro lati corrispondenti sono proporzionali e quindi : AD : OB = OA : BC , da cui otteniamo : $OB \cdot OA = AD \cdot BC \cdot OB \cdot OA = AD \cdot BC$; ma il punto O è punto medio di AB e quindi : OA = AB/2 .Possiamo perciò concludere che : $\frac{AB^2}{4} = AD \cdot BC$

 $\frac{AB^2}{4} = AD \cdot BC$ e da qui segue che $AB^2 = 4AD \cdot BC$ $AB^2 = 4AD \cdot BC$.

2)Soluzione proposta da Niccolò Falcinelli, Federico Pampanelli Nicchi, Mario Solinas, Jacopo Buratta Classe 2^L, Liceo Scientifico "Galeazzo Alessi" Perugia.



IPOTESI:

-ABCD quadrilatero circoscritto ad una semicirconferenza di centro O, che è tangente ai lati AD, DC e BC -PQ diametro e P, Q appartengono ad AB

-O è il punto medio di AB

TESI:

a) I triangoli AOD, DOC e COB sono simili.

b) $AB^2 = 4BC \cdot AD$.

DIMOSTRAZIONE:

Tracciamo i raggi OG e OE: essi sono perpendicolari rispettivamente a AD e CB per il teorema relativo alle rette tangenti a una circonferenza (Se una retta è tangente ad una circonferenza essa è perpendicolare al raggio che ha un estremo nel punto di tangenza).

Consideriamo ora i triangoli AOG e OBE, essi sono dei triangoli rettangoli, in quanto gli angoli in \hat{G} ed \hat{E} sono retti. OB = AO, perché per ipotesi O è il punto medio di AB; OG=OE perché raggi.

Dunque, per il criterio di congruenza dei triangoli rettangoli, i triangoli AOG e OBE sono congruenti.

In particolare, $\hat{B} \hat{B} = \hat{A} \hat{A}$ (1)

Per il teorema delle tangenti, poiché AD e DC sono tangenti in G e F alla semicirconferenza, con D come punto esterno, si ha che DO è bisettrice dell'angolo $A^{\widehat{D}\widehat{D}}C$, cioè $A^{\widehat{D}\widehat{D}}O=O^{\widehat{D}\widehat{D}}C$ (2)

Analogamente, sempre per il teorema delle tangenti (DC e CB tangenti in F ed E, con C come punto esterno), si ha che $D^{\widehat{C}\widehat{C}}O=O^{\widehat{C}\widehat{C}}B$ (3)

Dato che ABCD è un quadrilatero $\hat{A}\hat{A} + A\hat{D}\hat{D}C + D\hat{C}B + \hat{C}B + \hat{B}\hat{B} = 360^{\circ}$, e quindi, tenendo conto di (1), (2), (3) si ha che $2\hat{A}\hat{A} + 2A\hat{D}\hat{D}O + 2D\hat{C}O\hat{C}O = 360^{\circ}$ da cui segue che $\hat{A}\hat{A} + A\hat{D}\hat{D}O + D\hat{C}O\hat{C}O = 180^{\circ}$ (4).

Consideriamo i triangoli ADO e ODC. Essi hanno $A\hat{D}\hat{D}O = O\hat{D}\hat{D}C$ per quanto dimostrato al (2) .Nel triangolo ADO si ha $D\hat{O}A$ $D\hat{O}A$ $=180^{\circ}$ - $(\hat{A}\hat{A}+A\hat{D}\hat{D}O)$. Dalla (4) segue che $D\hat{C}O$ $\hat{C}O$ =180°- $(\hat{A}\hat{A}+A\hat{D}\hat{D}O)$ [e quindi $D\hat{O}A$ $D\hat{O}A$ = $D\hat{C}O$ $\hat{C}O$]. Per il primo criterio di similitudine i triangoli ADO e ODC sono simili (5)

Analogamente si dimostra che i triangoli ODC e OCB sono simili. Essi hanno $D^{\hat{c}}\hat{c} O = O^{\hat{c}}\hat{c} B$ per quanto dimostrato al punto (3)

Si ha poi , per (1) , (3) e (5) , che $\vec{B} \hat{O} C \vec{B} \hat{O} C = 180^{\circ} - (\vec{B} \vec{B} + O \vec{C} \vec{C} \vec{B}) = 180^{\circ} - (\vec{A} \vec{A} + D \vec{C} \vec{O} \vec{C} \vec{O})$ $= [\vec{A} \hat{D} \vec{D} \vec{O} =]\vec{O} \vec{D} \vec{D} \vec{C} \qquad \text{Per il primo criterio di similitudine, i triangoli ODC e OCB sono simili}$ (6)

Per la proprietà transitiva di cui gode la similitudine, da (5) e (6) segue che i triangoli AOD, DOC e COB sono simili.

b) Dalla similitudine dei tre triangoli, otteniamo che: BC/AO = OB/AD = OC/OD. Considerando la prima eguaglianza: BC/AO= OB/AD. (Per ipotesi AO= OB). \rightarrow BC=AO²/AD \rightarrow BC \cdot AD= AO² \rightarrow 4BC \cdot AD= 4AO².

Inoltre AB= 2AO=(AO +OB)
$$\rightarrow$$
 AB²= 4AO²

Segue che
$$AB^2 = 4BC \cdot AD$$

C.V.D.