Esame di Stato Liceo Scientifico

Prova di Matematica corso di ordinamento - 21 giugno 2012

Soluzione del PROBLEMA 1 (a cura di S. De Stefani)

PROBLEMA 1

Siano f e g le funzioni definite, per tutti gli x reali, da

$$f(x) = \left| 27x^3 \right|$$
 e $g(x) = sen\left(\frac{3}{2}\pi x\right)$

- 1. Qual è il periodo della funzione g? Si studino f e g e se ne disegnino i rispettivi grafici G_f e G_g in un conveniente sistema di riferimento cartesiano Oxy.
- 2. Si scrivano le equazioni delle rette r e s tangenti, rispettivamente, a G_f e a G_g nel punto di ascissa $x = \frac{1}{3}$. Qual è l'ampiezza, in gradi e primi sessagesimali, dell'angolo acuto formato da r e da s?
- 3. Sia R la regione delimitata da G_f e da G_g . Si calcoli l'area di R.
- 4. La regione R, ruotando attorno all'asse x, genera il solido S e, ruotando attorno all'asse y, il solido T. Si scrivano, spiegandone il perchè, ma senza calcolarli, gli integrali definiti che forniscono i volumi di S e di T.

Punto 1

Il periodo della funzione $g(x) = sen\left(\frac{3}{2}\pi x\right)$ è $T = \frac{2\pi}{\frac{3}{2}\pi} = \frac{4}{3}$.

• Studio della funzione: $f(x) = |27x^3|$

Dominio: R

Simmetrie notevoli: $f(-x) = |-27x^3| = f(x)$, la funzione è pari.

Segno: $f(x) > 0 : |27x^3| > 0 \implies \forall x \neq 0$

Intersezioni con gli assi: Assi x e y: (0; 0)

Limiti e asintoti: $\lim_{x\to\infty} f(x) = +\infty$

(non ci sono asintoti obliqui, essendo $m = \lim_{x \to \infty} \frac{f(x)}{x} = \infty$).

Studio della derivata prima per $x \ge 0$: $f'(x) = 81x^2$

Punti stazionari: f'(x) = 0 per x = 0

Intervalli di crescenza: f'(x) > 0 se $x \ne 0$

x = 0 è un punto di minimo assoluto

Studio della derivata seconda per x > 0: f''(x) = 162x

La funzione è convessa per ogni x > 0.

• Studio della funzione: $g(x) = sen\left(\frac{3}{2}\pi x\right)$

Dominio: \Re

Simmetrie notevoli: f(-x) = -f(x), la funzione è dispari

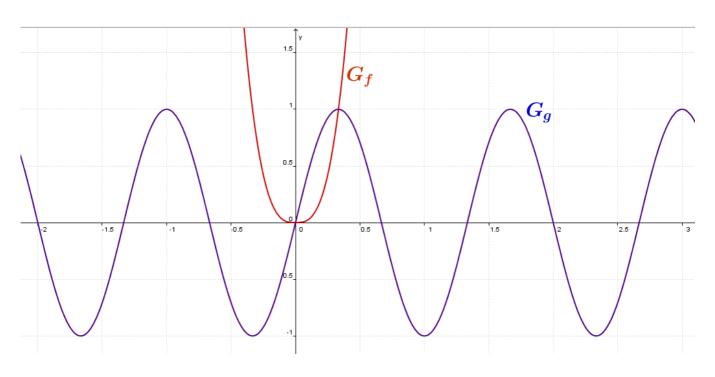
Segno:
$$f(x) > 0$$
 per $0 + \frac{4}{3}k < x < \frac{2}{3} + \frac{4}{3}k$, $k \in \mathbb{Z}$

Intersezioni con asse x: $\left(0+\frac{2}{3}k;0\right)$, $k \in \mathbb{Z}$

Massimi e minimi:

Massimi in
$$\left(\frac{1}{3} + \frac{4}{3}k; 1\right)$$
, $k \in \mathbb{Z}$

minimi in
$$\left(1 + \frac{4}{3}k; -1\right)$$
, $k \in \mathbb{Z}$



Punto 2

Il punto di ascissa $x = \frac{1}{3}$ ha ordinata $f\left(\frac{1}{3}\right) = \left|27 \cdot \frac{1}{27}\right| = 1$. La retta r tangente a G_f in $\left(\frac{1}{3};1\right)$, di coefficiente angolare $m_r = f'\left(\frac{1}{3}\right) = 81 \cdot \frac{1}{9} = 9$, ha equazione $y - 1 = 9\left(x - \frac{1}{3}\right)$.

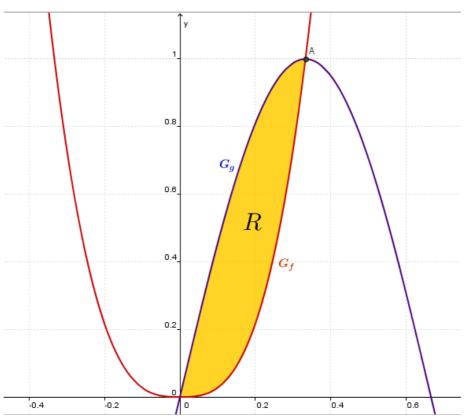
$$r: \quad y = 9x - 2$$

Il punto di ascissa $x=\frac{1}{3}$ ha ordinata $g\left(\frac{1}{3}\right)=sen\left(\frac{3}{2}\pi\cdot\frac{1}{3}\right)=sen\left(\frac{\pi}{2}\right)=1$. La retta s tangente a G_g in $\left(\frac{1}{3};1\right)$ ha coefficiente angolare $m_s=g'\left(\frac{1}{3}\right)=\frac{3}{2}\pi\cdot\cos\left(\frac{3}{2}\pi\cdot\frac{1}{3}\right)=0$, quindi è parallela all'asse x. s: y=1

L'angolo acuto α formato da r ed s è tale che: $tg\alpha = \left| \frac{m_r - m_s}{1 + m_r m_s} \right| = \frac{9 - 0}{1 + 0} = 9$, per cui $\alpha = arctg(9) \cong 83,6598$.

L'ampiezza dell'angolo acuto formato dalle due rette è 83° 39′ 35″.

Punto 3



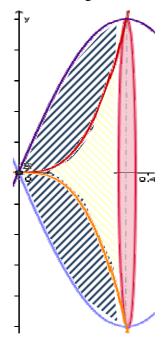
Poiché le due funzioni si intersecano in $A\left(\frac{1}{3};1\right)$, l'area richiesta coincide con l'integrale da 0 a $\frac{1}{3}$ della differenza tra G_g e G_f , quindi:

$$R = \int_{0}^{\frac{1}{3}} \left(sen\left(\frac{3}{2}\pi x\right) - 27x^{3} \right) dx = \left[-\frac{2}{3\pi} \cos\left(\frac{3}{2}\pi x\right) - 27\frac{x^{4}}{4} \right]_{0}^{\frac{1}{3}} = -\frac{2}{3\pi} \cos\left(\frac{3}{2}\pi \cdot \frac{1}{3}\right) + \frac{2}{3\pi} - 27 \cdot \frac{1}{81} \cdot \frac{1}{4} = -\frac{2}{3\pi} \cdot 0 + \frac{2}{3\pi} - \frac{1}{12} = \frac{8 - \pi}{12\pi} \approx 0.13.$$

Punto 4

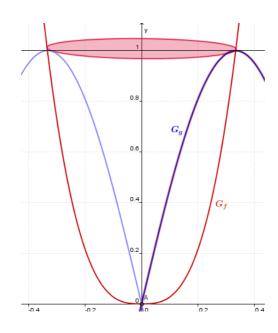
Il volume del solido che si ottiene facendo ruotare R attorno all'asse x è dato dall'integrale definito

$$S = \pi \cdot \int_{0}^{\frac{1}{3}} \left(sen^{2} \left(\frac{3}{2} \pi x \right) - 729x^{6} \right) dx$$



Il volume del solido che si ottiene facendo ruotare R attorno all'asse y è dato dall'integrale definito calcolabile attraverso il "metodo dei gusci cilindrici":

$$T = 2\pi \int_{0}^{\frac{1}{3}} \left(x \cdot g\left(x \right) - x \cdot f\left(x \right) \right) dx \quad \Rightarrow \quad T = 2\pi \cdot \int_{0}^{\frac{1}{3}} \left(x \operatorname{sen}\left(\frac{3}{2}\pi x \right) - 27x^{4} \right) dx$$



Commento

Livello di difficoltà:			☐ basso ☒ medio ☐ alto				
E' in programma?				⊠ si'	\square no	□ di s	olito non si fa
Normalmente si fa a scuola?			⊠ si	□ no	\square non sempre		
E' un argomento presente nei libri di testo?				⊠ si	□ no	□ non	sempre
Controlla conoscenze / abilità / competenze fondamentali? ⊠ si □ no							
Formulazione	☐ molto chiara	ĭ corretta	□ро	oco chiara	ı 🗆 am	nbigua	□ scorretta