Esame di Stato – sessione straordinaria - seconda prova scritta - Liceo scientifico (tutti gli indirizzi) - Prova scritta di Matematica – 12 settembre 2024

PROBLEMA 2 – soluzione di L. Tomasi

Si consideri la funzione $f(x) = e^{-x^2}$.

- a) Tracciare, nel medesimo sistema di riferimento, il grafico γ_1 della funzione f(x) e il grafico γ_2 della sua funzione derivata, individuando i loro asintoti, estremi e flessi. Successivamente scrivere le coordinate del punto P in cui γ_1 e γ_2 si intersecano.
- b) La retta di equazione $x=t,\ t\in\mathbb{R}$, incontra γ_1 e γ_2 , rispettivamente, nei punti P_1 e P_2 . Determinare il valore del parametro t, in modo che la misura del segmento che unisce i due punti abbia misura massima e calcolare il valore di tale misura.
- c) Sia γ_3 il grafico rappresentativo della funzione f''(x). Calcolare l'area della regione finita delimitata da γ_2 e γ_3 .
- d) Posto $F(x) = \int_0^x e^{-t^2} dt$, calcolare il $\lim_{x\to 0} \frac{F(x)}{f'(x)}$ spiegando perché, in x=0, le funzioni F(x) ed f'(x) sono infinitesime dello stesso ordine.

Soluzione

Consideriamo la funzione esponenziale:

$$f(x) = e^{-x^2}$$

Punto a)

a) Tracciare, nel medesimo sistema di riferimento, il grafico γ_1 della funzione f(x) e il grafico γ_2 della sua funzione derivata, individuando i loro asintoti, estremi e flessi. Successivamente scrivere le coordinate del punto P in cui γ_1 e γ_2 si intersecano.

La funzione f(x) è definita sui reali, sempre positiva, pari, derivabile (e quindi continua) per ogni x reale avente come asintoto l'asse delle x. Il massimo relativo (e assoluto) si ha per x=0 e vale y=1. Il grafico è a forma di "campana".

La derivata prima della funzione è

$$f'(x) = -2xe^{-x^2}.$$

Inoltre per x > 0 si ha f'(x) < 0 e per x < 0 si ha f'(x) > 0. Quindi x = 0 è un punto di massimo relativo (e assoluto) e il massimo vale f(0) = 1.

La derivata seconda è:

$$f''(x) = -2(e^{-x^2} - 2x^2e^{-x^2}) = 2e^{-x^2}(2x^2 - 1).$$

Pertanto i flessi sono i punti di ascissa $x = \pm \frac{\sqrt{2}}{2}$. Per valori esterni all'intervallo dei punti di flesso, la curva è convessa. Il grafico della funzione è riportato in figura 1.

Studiamo ora la funzione f'(x).

La derivata prima è una funzione definita sui reali, dispari, il cui grafico passa per l'origine degli assi e che ha come asintoto l'asse delle ascisse.

I punti di flesso della f(x) diventano rispettivamente $x = -\frac{\sqrt{2}}{2}$ il punto di massimo relativo (e assoluto) della f'(x) e = $-\frac{\sqrt{2}}{2}$ il punto di minimo relativo (e assoluto) della f'(x). In tali punti si ha

$$f'\left(-\frac{\sqrt{2}}{2}\right) = \sqrt{2}e^{-\frac{1}{2}} = \frac{\sqrt{2}}{\sqrt{e}} = \sqrt{\frac{2}{e}}$$

Quindi, essendo f'(x) dispari, si ha:

$$f'\left(-\frac{\sqrt{2}}{2}\right) = -\sqrt{\frac{2}{e}} \ .$$

Calcoliamo ora la derivata terza, ossia la derivata seconda di f'(x):

$$e^{-x^2}(2x^2 - 1).$$

$$f'''(x) = 2(-2xe^{-x^2}(2x^2 - 1) + 4xe^{-x^2}) = 4xe^{-x^2}(1 - 2x^2 + 2)$$

e in definitiva

$$f'''(x) == 4xe^{-x^2}(3-2x^2)$$

il cui segno dipende dalla funzione polinomiale $x(3-2x^2)$. Quindi la funzione f'(x) ha i flessi nei punti di ascissa $x=-\sqrt{\frac{3}{2}}, x=0$ e $x=-\sqrt{\frac{3}{2}}$ ed è convessa nella semiretta $x<-\sqrt{\frac{3}{2}}$ e nell'intervallo $0< x<\sqrt{\frac{3}{2}}$ ed è concava altrimenti.

Nella figura 1 riportiamo i grafici di f(x) e di f'(x).

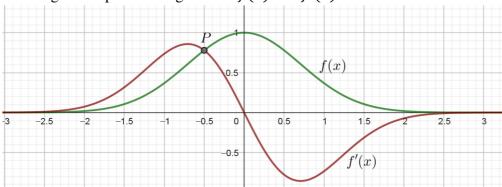


figura 1

Per determinare le coordinate del punto in cui i grafici di f(x) e di f'(x) si intersecano, risolviamo il sistema

$$\begin{cases} y = f(x) \\ y = f'(x) \end{cases}$$

che equivale all'equazione f(x) = f'(x). Si ottiene

$$e^{-x^2} = -2xe^{-x^2}$$

Quindi si ha 1 = -2x, ossia $x = -\frac{1}{2}$ e il punto *P* ha coordinate

$$P\left(-\frac{1}{2}, \frac{1}{\sqrt[4]{e}}\right)$$
.

Punto b)

b) La retta di equazione $x=t,\ t\in\mathbb{R}$, incontra γ_1 e γ_2 , rispettivamente, nei punti P_1 e P_2 . Determinare il valore del parametro t, in modo che la misura del segmento che unisce i due punti abbia misura massima e calcolare il valore di tale misura.

Intersechiamo le due curve con la retta di equazione x = t. Il punto P_1 ha coordinate (t, e^{-t^2}) e il punto P_2 di coordinate $(t, -2te^{-t^2})$.

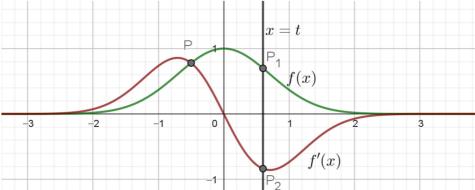


figura 2

La lunghezza del segmento P_1P_2 è data dalla funzione

$$l(t) = |f(t) - f'(t)|$$

$$l(t) = |e^{-t^2} + 2te^{-t^2}| = e^{-t^2}|1 + 2t|.$$

Per $t \ge -\frac{1}{2}$ si ottiene

$$l(t) = |e^{-t^2} + 2te^{-t^2}| = e^{-t^2}(1+2t)$$

che ha come derivata

$$l'(t) = -2te^{-t^2}(1+2t) + 2e^{-t^2} = 2e^{-t^2}(1-2t)$$

il cui segno dipende solo da 1-2t. Pertanto, $l'(t) \ge 0$ se e solo se $t \le \frac{1}{2}$. Il massimo del segmento si ha quindi per $t=\frac{1}{2}$ e la lunghezza massima del segmento è

$$l\left(\frac{1}{2}\right) = 2e^{-\frac{1}{4}} = \frac{2}{\sqrt[4]{e}}.$$

Punto c)

c) Sia γ_3 il grafico rappresentativo della funzione f''(x). Calcolare l'area della regione finita delimitata da γ_2 e γ_3 .

Disegniamo il grafico di f'(x) e di f''(x) nello stesso sistema di assi cartesiani e troviamo il loro punti di intersezione.

Si trova immediatamente che si incontrano per x = -1 e $x = \frac{1}{2}$ (figura 3).

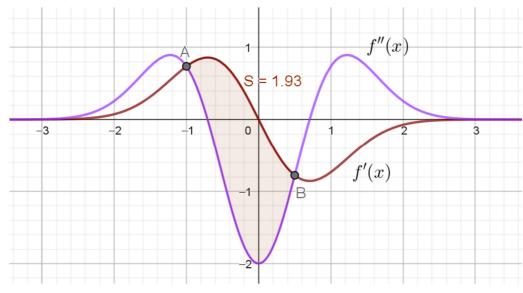


figura 3

Pertanto l'area richiesta è data dal seguente integrale definito:

$$S = \int_{-1}^{\frac{1}{2}} (f'(x) - f''(x)) dx = \int_{-1}^{\frac{1}{2}} (-2xe^{-x^2} - 2e^{-x^2}(2x^2 - 1)) dx =$$

$$S = 2 \int_{-1}^{\frac{1}{2}} e^{-x^2} (-2x^2 - x + 1)) dx.$$

Calcoliamo dapprima l'integrale indefinito [non facile...]:

$$\int e^{-x^2} (-2x^2 - x + 1) dx.$$

Lo scomponiamo come segue:

$$\int e^{-x^2} (-2x^2 - x + 1) dx = \int e^{-x^2} (-2x^2 - x) dx + \int e^{-x^2} dx \qquad (*)$$

Calcoliamo ora per parti il primo integrale dopo aver osservato:

$$\int e^{-x^2} (-2x^2 - x) dx = \int (-2x) e^{-x^2} \left(x + \frac{1}{2} \right) dx =$$

$$\int (-2x) e^{-x^2} \left(x + \frac{1}{2} \right) dx = e^{-x^2} \left(x + \frac{1}{2} \right) - \int e^{-x^2} dx.$$

Sostituendo nell'integrale (*)

$$\int e^{-x^2} (-2x^2 - x + 1) dx = e^{-x^2} \left(x + \frac{1}{2} \right) - \int e^{-x^2} dx + \int e^{-x^2} dx =$$

$$= e^{-x^2} \left(x + \frac{1}{2} \right) + c.$$

Ritornando all'integrale definito, abbiamo:

$$S = 2 \int_{-1}^{\frac{1}{2}} e^{-x^2} (-2x^2 - x + 1)) dx = 2 \cdot \left[e^{-x^2} \left(x + \frac{1}{2} \right) \right]_{-1}^{\frac{1}{2}} =$$

$$= 2 \cdot \left[e^{-x^2} \left(x + \frac{1}{2} \right) \right]_{-1}^{\frac{1}{2}} = 2 \cdot \left(e^{-\frac{1}{4}} + \frac{e^{-1}}{2} \right) = 2 \cdot \left(\frac{1}{\sqrt[4]{e}} + \frac{1}{2e} \right) \approx 1,93.$$

Punto d)

d) Posto $F(x) = \int_0^x e^{-t^2} dt$, calcolare il $\lim_{x\to 0} \frac{F(x)}{f'(x)}$ spiegando perché, in x=0, le funzioni F(x) ed f'(x) sono infinitesime dello stesso ordine.

Calcoliamo il limite:

$$\lim_{x \to 0} \frac{F(x)}{f'(x)} = \lim_{x \to 0} \frac{\int_0^x e^{-t^2} dt}{-2xe^{-x^2}}.$$

Questo limite si presenta nella forma indeterminata $\frac{0}{0}$. Applicando la prima regola di de l'Hôpital, otteniamo

$$\lim_{x \to 0} \frac{e^{-x^2}}{2e^{-x^2}(2x^2 - 1)} = \lim_{x \to 0} \frac{1}{2(2x^2 - 1)} = -\frac{1}{2}.$$

Poiché il limite esiste finito non nullo, la funzione F(x) e la funzione f'(x) sono infinitesimi dello stesso ordine per x che tende a 0.

Commento

Problema molto laborioso e pieno di calcoli. L'integrale al punto c) è molto difficile e non si pensa sia stato svolto da molti studenti.

Tabella di analisi/commento del problema

Livello di difficoltà stimato	□ Basso	☐ Medio		⊠ Alto	☐ Molto alto	
Formulazione del problema	☐ Scorretta	☐ Ambigua		☐ Poco chiara	区 Corretta	☐ Molto chiara
Si tratta di un problema contestualizzato	⊠ No	☐ Parzialmente		☐ In modo accettabile	☐ Ben contestualizzato	
L'argomento è presente nelle Indicazioni Nazionali	⊠ Sì		□ No		☐ Non è esplicitato / Non è chiaro	
L'argomento è presente nel QdR di Matematica?	⊠ Sì		□ No		☐ Non è esplicitato / Non è chiaro	
Di solito, viene svolto nella pratica didattica usuale?	⊠ Sì		□ No		☐ Non sempre	
È un argomento presente nei libri di testo di Matematica?	□ No		□ Non sempre		⊠ Sempre	
Verifica conoscenze / abilità/ competenze fondamentali?	⊠ Sì		☐ Solo parzialmente		□ No	
Per la risoluzione del problema è utile una calcolatrice grafica?	⊠ Sì		□No		☐ Parzialmente	